Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 8: 763115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746239

RESUMO

The shape of lipids has long been suspected to be a critical determinant for the control of membrane fusion. To experimentally test this assertion, we used conical and malleable lipids and measured their influence on the fusion kinetics. We found that, as previously suspected, both types of lipids accelerate fusion. However, the implicated molecular mechanisms are strikingly different. Malleable lipids, with their ability to change shape with low energy cost, favor fusion by decreasing the overall activation energy. On the other hand, conical lipids, with their small polar head relative to the area occupied by the hydrophobic chains, tend to make fusion less energetically advantageous because they tend to migrate towards the most favorable lipid leaflet, hindering fusion pore opening. They could however facilitate fusion by generating hydrophobic defects on the membranes; this is suggested by the similar trend observed between the experimental rate of fusion nucleation and the surface occupied by hydrophobic defects obtained by molecular simulations. The synergy of dual-process, activation energy and nucleation kinetics, could facilitate membrane fusion regulation in vivo.

2.
Phys Rev Lett ; 125(19): 198102, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216584

RESUMO

Lipid membranes, the barrier defining living cells and many of their subcompartments, bind to a wide variety of nano- and micrometer sized objects. In the presence of strong adhesive forces, membranes can strongly deform and wrap the particles, an essential step in crossing the membrane for a variety of healthy and disease-related processes. A large body of theoretical and numerical work has focused on identifying the physical properties that underly wrapping. Using a model system of micron-sized colloidal particles and giant unilamellar lipid vesicles with tunable adhesive forces, we measure a wrapping phase diagram and make quantitative comparisons to theoretical models. Our data are consistent with a model of membrane-particle interactions accounting for the adhesive energy per unit area, membrane bending rigidity, particle size, and vesicle radius.

3.
Sci Rep ; 7: 43860, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266607

RESUMO

Lipid exchange occurs between membranes during fusion or active lipid transfer. These processes are necessary in vivo for the homeostasis of the cell at the level of the membranes, the organelles and the cell itself. They are also used by the cell to interact with the surrounding medium. Several assays have been developed to characterize in vitro these processes on model systems. The most common one, relying on fluorescence dequenching, measures lipid mixing between small membranes such as liposomes or nanodiscs in bulk. Usually, relative comparisons of the rate of lipid exchange are made between measurements performed in parallel. Here, we establish a quantitative standardization of this assay to avoid any bias resulting from the temperatures, the chosen fluorescent lipid fractions and from the various detergents used to normalize the measurements. We used this standardization to quantitatively compare the efficiency of SNARE-induced fusion in liposome-liposome and liposome-nanodisc configurations having similar collision frequency. We found that the initial yield of fusion is comparable in both cases, 1 per 2-3 million collisions in spite of a much larger dequenching signal with nanodiscs. Also, the long-term actual fusion rate is slightly lower with nanodiscs than in the liposome-liposome assay.


Assuntos
Membrana Celular/química , Lipossomos/química , Fusão de Membrana , Lipídeos de Membrana/análise , Nanoestruturas/química , Algoritmos , Membrana Celular/metabolismo , Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Temperatura
4.
Proc Natl Acad Sci U S A ; 114(6): 1238-1241, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115718

RESUMO

Membrane fusion is the cell's delivery process, enabling its many compartments to receive cargo and machinery for cell growth and intercellular communication. The overall activation energy of the process must be large enough to prevent frequent and nonspecific spontaneous fusion events, yet must be low enough to allow it to be overcome upon demand by specific fusion proteins [such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs)]. Remarkably, to the best of our knowledge, the activation energy for spontaneous bilayer fusion has never been measured. Multiple models have been developed and refined to estimate the overall activation energy and its component parts, and they span a very broad range from 20 kBT to 150 kBT, depending on the assumptions. In this study, using a bulk lipid-mixing assay at various temperatures, we report that the activation energy of complete membrane fusion is at the lowest range of these theoretical values. Typical lipid vesicles were found to slowly and spontaneously fully fuse with activation energies of ∼30 kBT Our data demonstrate that the merging of membranes is not nearly as energy consuming as anticipated by many models and is ideally positioned to minimize spontaneous fusion while enabling rapid, SNARE-dependent fusion upon demand.


Assuntos
Fusão de Membrana , Lipídeos de Membrana/química , Microscopia Eletrônica , Modelos Biológicos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...